Experiment to Find What Works “ It’s Worth the Effort

Reverse Air Cleaning Optimization

  • Clean based on differential pressure
  • Optimize cleaning cycle (e.g. 15-30-45 seconds)
  • Achieve good compartment isolation during cleaning
  • During low loads, use default program to clean minimum one time per 2-4 hours
  • Control reverse air pressure to: 1.0:1-1.5:1 air-to-cloth area (+1.5 H2O max)
  • Acoustic horns can help reduce R/A pressure

Pulse Jet Cleaning Optimization

  • Clean based on differential pressure
  • Clean online if possible
  • Clean one row in each compartment at a time
  • Clean rows of bags non-sequentially
  • Use minimum pulse pressure needed to control differential pressure
  • Keep pulse duration short (e.g. 0.10 seconds)
  • Use clean, dry compressed air

Shaker Cleaning Optimization

  • Clean based on differential pressure
  • Minimize movement and duration of shaking
  • Use anti-collapse rings
  • Use deflation dampers
  • Acoustic horns can help reduce differential pressure

 

Helpful Resources

KnowledgeBase: Introduction to Fabric Filters

KnowledgeBase: Operations & Maintenance

KnowledgeBase: Common Baghouse Misconceptions

KnowledgeBase: Protecting Fabric Filter Bags During Start Up

Our Capabilities: Intelligent Baghouse Cleaning Systems

Go Back

Focus on Operational Flexibility Reduced Derates, Improves Capacity

As the hopper evacuation system struggled to keep up with the collection profile of the unit, nightly derates were required to maintain operations. With improve performance and ash collection profiles, the plant was able to increase capacity, run co ...

Read the White Paper

"Not only were we able to drastically reduce opacity and PM, we were able to increase the revenue from our fly ash sales and improve system capacity. "

Back to Top