Major Components: Ductwork

Ductwork connects the precipitator with upstream and downstream equipment. The design of the ductwork takes into consideration the following:

  1. Low Resistance to Gas Flow “ Achieved by selecting a suitable cross-section for the ductwork and by installing gas flow control devices, such as turning valves and flow straighteners
  2. Gas Velocity Distribution “ Gas flow control devices are used to maintain good gas velocity distribution
  3. Minimal Fallout of Fly Ash “ Fallout can be minimized by using a suitable transport velocity
  4. Minimal Stratification of the Fly Ash “ A suitable transport velocity also reduces fly ash stratification in the gas stream
  5. Low Heat Loss “ The goal is to reduce the heat loss of the flue gas to a level that will prevent acid or moisture condensation in the downstream equipment, requiring the use of thermal insulation protected by external siding.
  6. Structural Integrity “ Ductwork structure supports its total load, including wind and snow loads. The design also allows for accumulated fly ash, negative/positive operating pressure, and gas temperature. Expansion joints are used to accommodate thermal growth.

 

Helpful Resources

KnowledgeBase: Gas Distrbution Systems

KnowledgeBase: Improve Flow Distribution

KnowledgeBase: Introduction to ESP

Our Capabilities: Emissions Compliance Planning & Management

Our Capabilities: Gas Flow & Fluid Dynamics Modeling

Go Back

Meeting NESHAP Rules Through Collaboration and Analysis

Cement Plant Success Story

Recently a cement plant customer was able to celebrate a huge "win" as a result of a collaborative strategy with Neundorfer. Following implementation, emissions levels tested at 70% below the new limit, filling the customer with a new-found confidenc ...

Read the White Paper

"Neundorfer helped a cement plant to remain economically viable and emissions compliant � gaining huge emissions improvements through low-cost upgrades."

Emissions Compliance

Cement Kiln Operation

Back to Top